
Back Row (left to right): Phil, Reid, Kurt, Dylan, Chris A.
Front Row: Dr. Alleyne, Kayla, Frank, Chris U., Cary, Spencer (Not pictured: Nate)
Postdoctoral
Zahra Marvi
With tremendous acceleration in electrified mobility (e-mobility), high-level coordination and control and getting the best out of the energy system are crucial. However, multi-domain safety-critical control, and system complexity make it an inherently challenging problem. As a postdoctoral associate, I am currently investigating the design of intelligent control and safe coordination of energy systems inspired by multi-agent techniques.
Ph.D. Students
Reid Smith: Modeling and Control Optimization for Hybrid-Electric Vehicles
Hybrid-electric vehicles for high payload, long-range applications introduce new challenges into electro-thermal control due to a dramatic increase in power requirements when compared to short-range electric and hybrid-electric vehicles. As these vehicles utilize turbomachinery, drive motors, cooling cycles, and energy storage systems, the corresponding control optimization presents multi-domain, multi-timescale challenges. Reid’s current work focuses on modeling the electrical and thermal dynamics of each subsystem, while his future work will be to design and validate a control architecture for this hybrid-electric vehicle power management system.
Kayla Russell: Modeling and Control Optimization for Aircraft
With the increase of on-board electronics and avionics implemented on aircraft, the electrical power demand from aircraft drastically increases which results in excess heat generation and a need for more advanced thermal management systems. My current research is to create a control-oriented models of a vapor compression system, a common refrigeration system on aircraft. These models will be used to help improve the existing hierarchical model predictive control framework for aircraft, resulting in safer and more efficient air travel.